Archive

Archive for the ‘University’ Category

Words, words, words…

February 8, 2017 Leave a comment

I have the good fortune of having three PhD theses on my desk at present, two where I am the external examiner and one where I am the internal. They are all on interesting topics, one very related to my own work and the other two a little more obliquely related. While reading theses for examination is a chore – you need to make lots of notes and make sure you have sensible questions to probe the student on, it is also a really good way to concentrate on a specific subject and hopefully learn something along the way.

Having picked up the first one to read my heart sank a little as it became clear that there were going to be lots of rather strangled grammar. If you are an aspiring or current PhD student, you need to know that the quality of your science is what will take you through in the end, but your viva is likely to be a hell of a lot easier if the examiner does not need to stop every paragraph to note how you have deviated from the norms of good English.

My strong advice: throughout your PhD, write as much as you can and get feedback on your work. This can be from your supervisor, lab mates or friends or through courses that I imagine all Universities (certainly in the UK) offer on academic writing. Or maybe by writing a blog. Also try, and this can be hard, to thoroughly proofread your final thesis, and get others to do so too. This will make your examiner’s job so much easier, and so much more enjoyable, allowing them to focus on what you have done. Words your means of delivering your message. Make sure they are your friends.

Advertisements

IoP Schools Outreach Meeting

May 23, 2014 2 comments

Yesterday I took an early flight down to London to attend an Institute of Physics (IoP) School Outreach Support Network meeting. I’m reasonably active in schools outreach work, and a little support never hurts. Overall the day was very positive, and I took home lots of little hints and tips that I might try and apply here, while it was also a chance to speak to range of academics that I might not normally come across. The slightly disappointing thing was that the flagship IoP activities in this area are funded in and for English schools exclusively. This ticks me off a little – a co-ordinated approach across the UK would seem appropriate, but I often find that people from ‘down South’ have difficultly dealing with a wholly different education system: there is a little of ‘I did A-levels, I understand them, the majority in the UK do them, so I need not concern myself further with anything else.’ This is disappointing, but it is a fact of life considering how eduction in the Uk is funded through devolved means – but I pay my membership fees to the IoP in London, and it’d be good to see maximum efficiency through shared schemes.

The main instrument the IoP is pushing is the ‘Stimulating Physics Network‘ which is designed to offer practical support and mentoring for physics teachers; pilot schemes are being set up with a range of partner schools who traditionally do not have much physics uptake at A level, with 35 support ‘coaches’ being available within the 420 partner schools to facilitate this. There is a great push to try and look and gender balance in physics (and through some of the schemes on offer, the wider school community) through direct work with girls, running workshops, offering peer mentoring support and senior pupil mentoring of junior pupils, increased STEM Ambassador support, highlighting gender aware pedagogy and the like. In general all positive and fairly sensible stuff, much of it on the back of previous IoP reports in this area: “It’s Different for Girls” and “Closing Doors“. The funding is there for 2-3 years and we’ll see how it all pans out. Additionally there is a scheme aimed at just London and surrounds funded by the Drayson Foundation. Physics does appear to have quite a big gender imbalance problem, and it’s good to see it being tackled head on on a number of fronts.

Other schemes currently include the ‘Your Life‘ initiative, which is led through private funding and is designed to promote better female participation in STEM subjects, aimed especially at 14-16 year olds. [Having just looked at their website, I am not quite sure what it’s all about, but hopefully the industry input will be a positive step]. There is also the Researchers in Schools project which will pay a premium of £40k a year for trainee teachers in physics and maths (for two years I believe), although I think the target number for the scheme is very low. This is aimed at PhD students and postdocs. It sounds attractive, but I can’t help feel that it would be somewhat divisive in a staff room.

We also heard from Gareth Edwards from the Open University about a RCUK funded scheme , the Schools-University Partnership which at the OU is designed to look at a number of different activities to promote engagement – open lectures, open inquiry, open dialogues and open creativity. The study will then look at the evidence base for the success of such projects. Gareth’s talk and little activity session was designed to highlight how one might measure success in these areas. The example used was in the ‘Open creativity’ section where students received media training, just like staff at the OU would and then were going to make a video making use of an element of current OU research. I think we’ll need to wait a wee while to see the project outcomes (it runs to 2015).

We also heard from a few physics academics on their outreach projects, one from Phil Furneaux from Lancaster about making better use of PhD students for outreach and the types of things they need if you are training them for such events; another from Heather MacRae from Venture Thinking and Helen Mason from University of Cambridge who produced an excellent project engaging pupils from an East London school to produce an iBook about the sun, “A big ball of fire“. The students got to visit Cambridge, took in a special lecture and worked on the multimedia aspects of putting their book together. The researchers were surprised at the range of media they got back. The idea can be readily ported to almost any subject area, although a lecture in your University might not be quite as swanky as one at Cambridge.

In the final talk we learned about the University of Bradford’s Robotic Telescope Project. This allows schools access to the telescope, which is in Tenerife, and to take real data and interact with astronomers. The idea being to provide a cross curricula opportunity which will hopefully also inspire pupils to stay with STEM.

So all in all a pretty good day, aside from the delayed flight home which mean to bed after 1am, and I have a few new ideas to try and push here, should I get a spare few minutes.

 

 

 

 

 

Summer Studentship Dilemma

We have been lucky enough to have been awarded two summer studentships through the Institute of Physics Top50 placement scheme this year. This has meant that we have had a large number of applications for summer studentships from outside the University, whereas normally, most of our summer students tend to be pretty local. We have had twenty eight applications for our posts and having read through them all it looks like it is going to be a tough decision.

This got me to thinking: what is the purpose of a summer studentship? If this were a PhD position, or postdoc, or permanent staff member I’d be looking for the very best applicant, who shows the most potential, but reading through the CVs made me wonder, if an 8-week studentship, which is clearly not a job in any sense, should be judged in the same way? It is clear from the CVs there there a bunch of talented, motivated and above all experienced undergraduate students out there – they have undertaken previous research projects and tick the boxes in terms of writing a decent CV; they have things to talk about. But equally there a bunch of students who I started to worry about – they are clearly bright, with good grades and I am sure would do a good job over the summer, but they have little experience. Some have little experience of anything with patchy evidence of summer jobs or part time jobs, others can show that they have worked in a shop, but little else. I worry that many of these students, when it comes to getting real jobs after graduation, will struggle, based on their CVs. I know some of this is self-imposed, but equally I know many students simply can’t either find, or can’t afford to do, shiny research placements. There are many restrictions on finding such roles. I also know that when I was in a similar position my CV was somewhat thin – I’ve always been fairly reserved and wasn’t so good at putting myself ‘out there’. Unfortunately, now more than ever, it’s what you do in your holidays that marks you out for employers, especially when there are so many graduates with 1sts and 2.1s.

And so I wonder – is the purpose of my summer studentships to offer the opportunity to students who have never had it, or to propel on even further their more experienced peers – do I want to help improve some of the those CVs, offer some training and mentoring and the chance for something different to those who might not have had it before, or just go for the best qualified? Bear in mind that the students are unlikely to do anything earth shattering in 8 weeks, so I can genuinely offer these placements without worrying if the student is going to be absolutely brilliant – I’m mainly looking for application and a genuine interest in the topic area of biophotonics. I could also look at getting the best students in with a view to PhD places next year – but the less experienced could be just as good as the experienced if given a chance. I am still mulling over how best to approach this task.

[Also, 29% of applicants are female, 71% male, so still a bit of a hill to climb to get to any sense of equality in the physical sciences. In fact this is a decent ratio compared to other application processes for more senior posts that I have seen].

A different way

Like many physicists, I suspect, I grew up gripped by the developments in quantum mechanics that happened at the start of the 20th century. This is often portrayed as the work of lone geniuses: Einstein, Bohr, Schrodinger, Heisenberg and the rest. That this work was carried out in isolation is to some extent true, but there was a surprising amount of collaboration and certainly discussion between the big hitters of the time. This work, and related studies in areas such as radioactivity, ultimately led to one of the biggest scientific collaborations that had ever existed – the Manhattan Project. This was an altogether different beast: one goal, build a bomb. Many of the brightest minds, engineers, physicists and chemists came together to work out how to achieve what they viewed as something that could help to win the war.

In modern times we have our own parallels of such large scale collaborations, CERN being the most obvious example. These mainly occur because of the huge scale and expense of the projects under consideration. I do often wonder though if we wouldn’t be much better placed to carried out nearly all scientific research through such large ‘crowdsourced’ efforts.

I have a small research group, too small to easily carry out the various ideas that I might have, too small to have the resources to fund all the experiments I’d like to try. It may be that I can persuade a funding council to give me money for these ideas, but the odds are against me. I can then wait and see if we can do them on the fly somehow, or find, depressingly, that someone beaten us to it, a few years after my original thought. I suspect nearly every scientist has similar thoughts about work that just never gets done.

But there are lots of groups out there, lots of talented people, lots of equipment going spare – lots of slack at certain times within any research group, big or small – why don’t I just publicly lists all my ideas and hope someone else runs with it and sees if it’ll work or not? It doesn’t work like that of course. We are precious with our ideas as they define our careers, the funding that we do get, which in turn allows us to build our groups and justify the continued need to employ us. Even collaborations, which are a way to help realise ideas that often we can’t do ourselves can be difficult, time consuming and often not quite what you need if you team up with the wrong group.

This does, I suspect, also have the problem of massively slowing down progress. We all want to win the prize, get the plaudits, get the pay rise, and this stems from doing the work and having your name in the right place on the author list. In this day and age of open access publishing, open data and near instantaneous access to all knowledge it does seem that if the end goal, the experiments, the finding things out is what we want to achieve , that our current way of ‘doing’ science seems increasingly outdated.

Could we do things differently? Would it be possible simply to fund research teams that can then respond to new ideas – take the very best ideas and see them through – have secure funding for staffing and equipment at certain Universities and then let academics the world over provide them with the ideas? This would provide much greater focus and possibly much greater efficiency in how we spend research money. An example would be, say, a centre for optical microscopy in the life sciences, based, for arguments sake at Dundee. We fill it with 100 staff and then throw open to the world the idea to present us with the most pressing problems in the area. It may be that these ideas receive some peer review to set priorities and then we task the centre with solving the problems. The originator of the idea gets appropriate credit, and the centre works collaboratively with the research community to help it make progress. We set up these little ‘Manhattan Projects’ with stability for staff, enhanced training for students, and better opportunities to exploit the research through critical mass. In a sense it centralises the experimental skills and distributes the ideas. It is a model that appears to work for very large scale experimental work, but would it be more efficient than our current massive distribution of experimental skills?

As it happens I am reading J. Craig Venter’s most recent book ‘Life at the speed of light‘ which in a way promotes this idea – a highly skilled, well funded lab pushing for a clear and ambitious research goal. Admittedly he was (and is) in competition with other groups, but if that funding was more concentrated and the initial thinking open and free for wider input and discussion to happen, could things have gone even more quickly? Do we want to see the results and the progress and quickly as we can or keep all the glory for ourselves?

The answer is that I am not sure – the model would seem to work in some cases, but clearly has problems, and would more than likely have to be globally accepted to work in the way I think it could. But with new paradigms appearing in the field of ‘open’ academia very rapidly, maybe there is a different way that we could do science, and actually see more of the collective ideas of the research community come to light and bear fruit.

Going on a summer holiday, quantum style

The Academic Summer is an oft discussed thing. There are usually two camps, the outraged non-academic, moaning about taxpayers money going to fund four months of time off for lazy academics to swan about and not teach anybody anything, and the aghast academic bemoaning the fact that they work bloody hard thank you very much during the summer, and barely have time for a real holiday anyway.

I don’t think I fall in the latter camp – I have a 12 month job, some of which involves contact teaching while the undergraduates are about, but which also involves a myriad of other things, like for example, today I was attending graduation and a garden party. It’s a hard life. I also hope to get at least one grant submitted in the next couple of weeks and the list of things to do on my whiteboard seems to grow each day – writing a whole new lecture course for September being very high on the list. So, like most people, I work hard, and this is in large part due to the fact that I enjoy my job. But the reality is that it can be hard to find time to take off on holiday. This is compounded by the odd way in which academics often end up to all intents and purposes as their own boss – so if you are mainly having to justify time off to yourself, it can be hard to tell yourself you really deserve it, or can really afford to take it off.

This is interesting as I have just finished reading “Quantum” by Manjit Kumar (which is well worth reading – it gives an excellent overview of the development of quantum mechanics in that golden area before the second world war, but rather rushes later developments that came later). In the book it tells the story of scientists who once upon a time led very different lives to us – no internet, no email, telephony in its infancy – you could wait years to see papers in print. This meant that scientists worked in greater isolation, but nonetheless the cohort of scientists who worked developing quantum mechanics managed to do something perhaps that has never really been done since. And, what kept cropping up was that they took lots of holidays. Bohr, Heisenberg etc were always popping off on walking trips, skiing outings, sailing and even going on academic ‘tours’ which probably involved a fair bit of travelling. Perhaps if you are a bunch of geniuses you can get away with lots of holiday – but I do think it perhaps suggests that sometimes academia takes its self rather seriously. Breaks are needed by everyone, working all the time is simply not good for the majority of us. Holidays perhaps allow a bit of that much needed thinking time. Me? Well, I had planned to take a week away with the family during the school holidays. After reading ‘Quantum’ I’d really love to take three, but have convinced myself that I definitively have to take two full weeks to recharge. Then I can come back and get stuck into the new challenges that will be coming my way in the next year or so. If you are an overworked academic – just ask yourself, ‘what would Bohr do?’. He’d go walking.

Physics and Life Sciences/Biophotonics Initiative

It seems appropriate that as EPSRC starts up its ‘Understanding the Physics of Life‘ network (also discussed by Athene Donald on Occam’s Razor) that we in Dundee are also starting up a new collaborative project between Life Sciences and Physics. The College of Life Sciences in Dundee is a world leading centre of research in a range of biological topics and in many ways is the dominant research centre in Dundee. Physics plays a rather more modest role in the life of the University, but in recent years we have been gathering significant momentum, and a range of pilot projects between physics and life sciences have now started to deliver results.

We have had some grant success recently as well, playing a part in an MRC Optical Microscopy proposal funded through Life Sciences and we have also just been awarded an Innovative Doctoral Programme ITN based at Dundee to help train a number of early career researchers in fully interdisciplinary projects. This should become active next year and lead to a significant boost in the number of projects we run between our two departments.

To try and cement these relationships further we have also established a trial project to host a space within Life Sciences that can be used by physicists to develop new techniques and tools side by side with the biologists. Our initial goals are to look at the development of new light sheet microscopy devices as well as test out in-house developed lasers for suitability as multiphoton imaging sources. We have a one year postdoctoral position advertised at present to work on these topics and also try and act as an interface point for staff looking to try out new pilot projects – including some of my own on intracellular optical manipulation. So if you are looking for a new interdisciplinary biophotonics role or know someone who is, please apply at the link above (you can contact me for more info).

We are also expanding our staff in biophysics – we have just welcomed Dr Ulrich Zachariae to the Division, who will work on computational biophysics problems, and hopefully will form close ties to the Drug Discovery Unit here, and will be welcoming a further biophotonics staff member next month. We have also been very lucky in our recruitment process for ‘Dundee Fellows’ and we’ll be adding another computational biophysicist later in the year, and hopefully to other biophysics areas depending on if offers are accepted.

Our goal in all this is to try and tackle new and bigger scientific problems by working together and we have exciting plans to try and make this area grow further at Dundee. So I am hopeful that we can make a big mark in the ever expanding research world at the physics and life sciences interface.

Printing the Moon

A few weeks ago I had the good fortune to attend a conference (in a loose sense) that was a million miles away from my normal academic meetings – South by Southwest (SxSW). This is a huge multifacted event, with over 100,000 attendees covering interactive. film, music, education and every other form of tech meets new media that you can think of.

I was there because I know a man who knows a woman who happens to work at NASA. My brilliant colleague Jon Rogers, a product designer in our Art School, works on a range of projects exploring how to make data ‘physical’. NASA, who have a desire to make their open data more used by interested parties have been developing a ‘Space Apps‘ challenge to try and focus people, in a crowdsourced manner, around certain topic areas. As one might imagine these challenges and their solutions are fairly software based, but NASA also wanted something a bit more hardware oreintated – hence ‘Making Space Apps Physical’. Jon wanted to try and broaded this idea out and so asked a couple of other designers, Sandra Wilson and Jayne Wallace and myself to get involved, adding to the team that already included Ali Llewellyn from NASA. This led to us submitting a panel proposal for SxSW this year, which was (surprisingly) accepted, based around this idea of making space a bit more immediate, a bit easier to interact with.

And so the “Print the Moon” project was born – my little contribution. The idea arose from an Advanced Higher (final year Scottish high school pupil) who wanted to try and do an experiment on Astronomy. We lent her a telescope and then suggested that she could try and do some measurement on craters on the moon looking at their shadows. Even with a decent telescope like ours this is not so easy, so I thought about how you might be able to do the same thing in the lab. With the ability to 3D print objects it seemed like it should be possible to print out a crater and then just use a torch or other light source to do the experiment, and this was the challenge I sent to a group of our keen undergraduates.

Essentially the problem was to find the right data and then take that and turn it into something readable by the 3D printer (or rapid prototyper). The data was provided by NASA’s Lunar Reconnaisence Orbiter with it’s Lunar Orbiter Laser Altimeter instrument providing 3D surface topography. The students then ported this into Matlab to plot the surface, sent it over to Meshlab for cleaning up and then sent it to Solidworks to output it to the printer. As an educational tool this has proved very valuable, as the students had never really used any of these before (expect Matlab). A copy of the Korolev Crater is shown below, from the dark side of the moon. You can then do a bit of trigonometry to try and get the crater dimensions based on shadow data. So all in all it works quite well.

3D version of Korolev on the dark side of the Moon.

3D version of Korolev on the dark side of the Moon. Spot the deliberate mistake.

And we took this over to South by Southwest and talked about it on the panel, and I even got to meet an astronaut. I’m very proud of my students getting stuck into something like this – a project that has no academic bearing on their courses – done just as it’s a bit of fun and it helps you to learn some new skills. I also think we could maybe push this towards a publication in something like the American Journal of Physics and will hopefully have some Nuffield Bursary students working on this over the summer to try and gather the necessary data.

Our students were also on hand at an event organised by New Media Scotland, the LateLab, as part of the Edinburgh Science Festival to talk about their work. And there is still more to come, with other events still to make use of out little chunk of the moon. Oh, and if you want to get involved, there is a Space Apps Challenge: “Dark Side of the Moon“.